The science of plant-based meat.

How is plant-based meat made? 

Animal meat is primarily muscle tissue. Plants don’t have muscles. So how do the plants we see growing in a field become a piece of meat that looks, smells, tastes, and cooks like animal meat? 

At its simplest level, animal meat is made up of protein, fat, vitamins, minerals, and water. Though plants don’t have muscles, they do contain protein, fat, vitamins, minerals, and water. Plant-based meat takes advantage of this biochemical similarity between plants and animals. 

For every protein, lipid, or functional compound in the dozen or two animal species we typically eat, we can look for an analog or replacement in the plant kingdom. If a replacement doesn’t exist in nature, we can try to make it through mechanical, chemical, or biological treatment of a plant ingredient.

The unique spatial arrangement of proteins in muscle tissue creates the distinct texture of animal meat. Chopped or minced meat has a simpler texture and is easier to replicate than larger pieces of animal meat like chicken breasts and pork chops which are made from intact muscle tissue. The spatial arrangement of proteins in these whole-muscle types of products is integral to the texture. Thus, not surprisingly, there are more technical challenges to overcome in order to biomimic whole cuts of animal meat with plant ingredients.

The general method used to produce plant-based meat involves three primary steps. First, we grow crops as a source of raw materials. Second, we process these crops to get rid of the parts of the plants we don’t want. At this stage, we end up with the proteins, fats, and fiber ingredients that will become our plant-based meat product. Finally, we put together the desired mixture of ingredients. This ingredient mixture then goes through a manufacturing process to create the muscle-like texture needed for meat.

Whether we are making plant-based burgers, chicken kebabs, pork dumplings, or sashimi, these same general production steps apply. The rest of this page summarizes each of these three technology sectors – crop development, ingredient optimization, and end product formulation and manufacturing – in more detail. We highlight the current state, existing challenges, and forward-looking opportunities for each technology sector.

What about other plant-based alternatives? 

For resources specific to plant-based dairy, please refer to GFI India’s plant-based dairy webinar and a GFI seminar on colloid approaches to plant-based milk by Dr. Julian McClements from the University of Massachusetts Amherst. For information about optimizing functional properties and applications of egg alternatives, please see GFI’s technical paper on plant-based egg alternatives.  

Although fungi and algae are not biologically classified as plants, plant-based products that include fungi- and algae-based ingredients are included in our definition of plant-based foods. Products such as Meati’s steak that are made solely from fungi using fermentation processes are not classified as plant-based meat. For more information about how companies like Meati use fungal biomass fermentation to create meat analogs, please refer to the science of fermentation. For more information about microalgae and seaweed as an alternative protein source, check out GFI India’s analysis.

The current state of crop development

It’s necessary to optimize crops for plant-based meat. 

In addition to components like starch, fiber, and oil, plants contain proteins. Different species of plants and the different parts of plants possess different combinations of protein types and structures. The types and amounts of proteins that can be extracted from a plant create different functional properties in plant-based meat, egg, and dairy applications. 

These plant-based proteins serve as the primary raw material for plant-based meat. Until recent years, soy and wheat proteins have been predominantly used in plant-based meat. But the breeding, growing, harvesting, and processing considerations for these crops have been optimized for other products rather than plant-based meat. For example, soy has been primarily optimized as an oilseed crop.

Recently, crops like pea and potato have been gaining traction for use in plant-based meat. But these crops have historically been bred and grown with an eye towards starch production. This means that the current commercial strains of soy, wheat, pea, and potato may have sacrificed protein content, composition, ease of isolation, solubility, and flavor in pursuit of maximizing desirable traits for oil or starch production. 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s